
Разработка ПНСТ на классификацию ПАВ и модификаторов в битум и асфальтобетон

Л.А.Горельшева, заведующая лабораторией асфальтобетонов, органоминеральных смесей и органических вяжущих, канд. техн. наук

К добавкам, конечной функцией которых является улучшение качества дорожного полотна, относятся следующие типы материалов:

- 1. Модификаторы битума;
- 2. Адгезионные присадки к битуму;
- 3. Стабилизаторы ЩМАС (щебеночно-мастичной асфальтобетонной смеси);
- 4. Модификаторы асфальтобетонной смеси;
- 5. Структурирующие добавки в асфальтобетонную смесь.

1. Модификаторы битума и асфальтобетонной смеси.

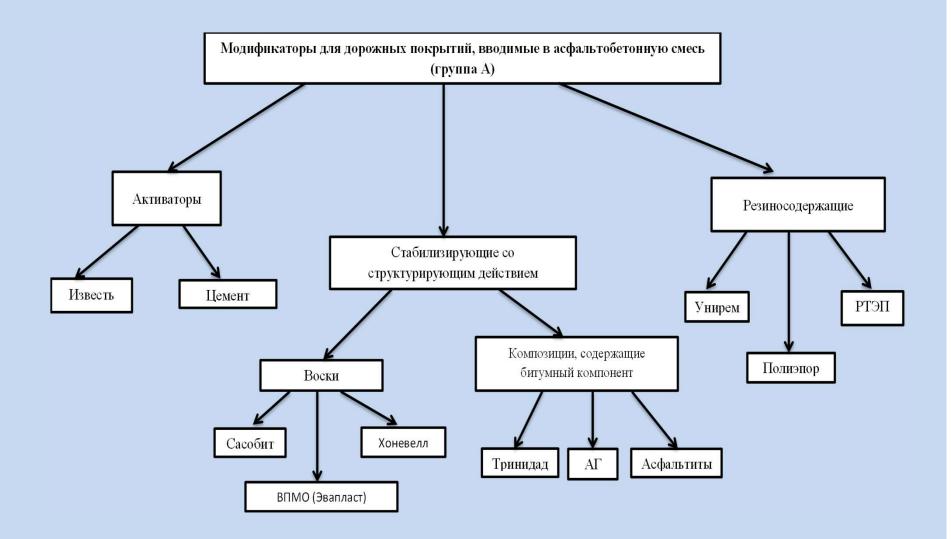
К ним относятся вещества или химические соединения, которые вводятся в битум или приготавливаемый на его основе материал (асфальтобетонную смесь) с целью направленного изменения физико-химических свойств и структуры материала для улучшения комплекса их эксплуатационных характеристик или получения новых свойств. В основном это полимерные добавки и добавки на основе лесотехнической промышленности и продуктов переработки растительных масел.

2. Поверхностно-активные вещества (ПАВ) и активаторы.

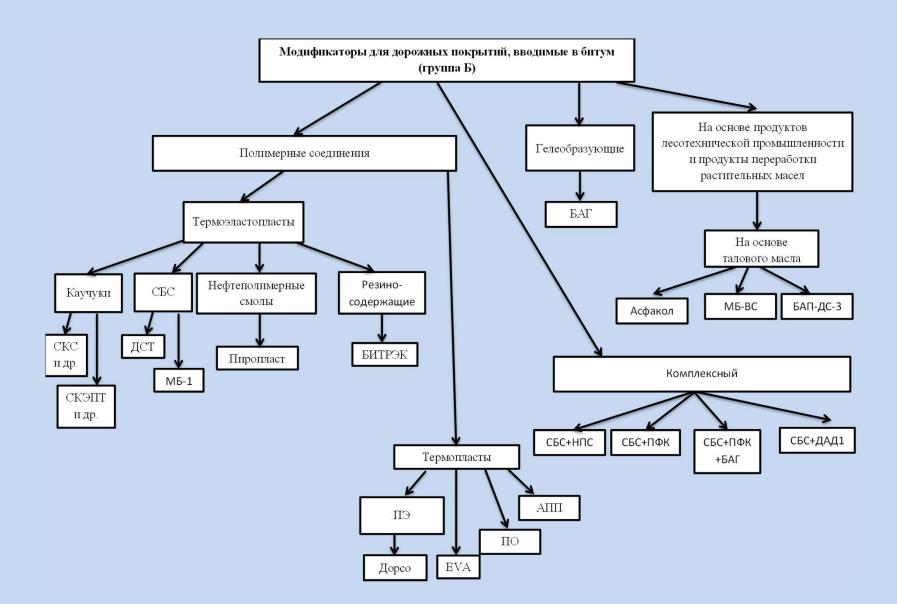
К ним относятся вещества или химические соединения, которые улучшают отдельные свойства преимущественно компонентов асфальтобетонной смеси. Они могут быть как органическими (ПАВ), так и минеральными (активаторы).

ПАВ преимущественно применяют для улучшения качества вяжущих, а активаторы - в минеральную часть смеси.

Функции модификаторов


- 1. Расширять диапазон рабочих температур битума.
- 2. Обеспечивать высокую стойкость асфальтобетона, приготовленного на модифицированном битуме, к деформациям за счет более высокой степени эластичности таких битумов.
- 3. Замедлять процесс старения асфальтобетонов.

Для модификации битума используются специальные искусственные материалы, такие, как полимерные соединения или сложные органические соединения растительного происхождения


Классификация модификаторов, вводимых в асфальтобетонную смесь (группа А)

Характерный признак модификатора	Основной модифицирующий компонент или процесс	Примеры
Стабилизирующие со структурирующим действием (СД)	Воски (В)	Сасобит Хоневелл ВПМО (Эвапласт)
	Композиции, содержащие битумный компонент (БК)	Тринидад асфальт Асфальтиты АГ
Активаторы (АК)	Активные мелкодисперсные наполнители (АМН)	Известь, цемент
Резиносодержащие (Р)	Резиновая крошка (РК)	Унирем РТЭП Полиэпор

Классификация модификаторов, вводимых в битум (группа Б)

Вид модификатора по типу применяемого сырья	По отношению к нагреванию	Основной активный компонент модификатора (АК)	Примеры модификаторов
Полимерные соединения (П)		Каучуки	скс, скэп
	Термоэластопласты (ПЭ)	СБС	дст, мб-1
		Нефтеполимерные смолы	НПС, пиропласт
		Резиносодержащие	БИТРЭК
	Термопласты (ПП)	Вторичный полипропилен (ПЭ)	дорсо
		Полиолефины ПО	
		EVA	EVA
		Атактический	
		полипропилен (АПП)	-
На основе продуктов лесотехнической промышленности и продукты переработки растительных масел (ЛТ)	-	На основе талового масла	Асфакол МБ-ВС (Селена) БАП-ДС-3
Комплексный (KM)	-	Два или три модификатора с различными активными компонентами	СБС+НПС СБС+ПФК СБС+ПФК+БАГ СБС+ДАД1
Гелеобразующие	-	На основе талового масла	БАГ

Поверхностно-активными веществами называют

химические соединения, которые адсорбируются на поверхности раздела жидкостей и твердых тел и влияют на их физико-химические или химические свойства.

По физико – химическому механизму их воздействия на поверхность раздела фаз и дисперсную систему в целом они делятся на:

- вещества, поверхностно-активные на границе раздела вода воздух. Это смачиватели
- разнообразные по природе вещества, поверхностно-активные на различных границах раздела фаз. ПАВ этой группы чаще всего выступают в качестве диспергаторов (эмульгаторов);
- ПАВ, обладающие способностью к образованию гелеподобных структур в адсорбционных слоях и в объёмах фаз. Их используют в качестве высокоэффективных стабилизаторов умеренно концентрированных дисперсных систем различной природы: пен, эмульсий, суспензий. ПАВ этой группы могут выступать как пластификаторы высококонцентрированных дисперсий.

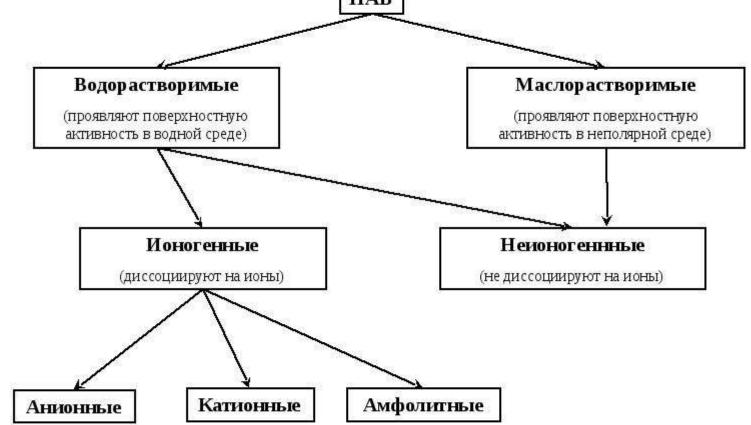
Функции ПАВ

- Изменять условия смачивания минеральных материалов вяжущим, создавая благоприятные условия для образования хорошей адгезии.
 - Усиливать адгезию.
- улучшать отдельные характеристики вяжущего, например, понижая его температуру хрупкости.
- Добавки ПАВ по-разному сдвигают верхнюю границу интервала упруго-пластичного состояния битумов: добавки класса аминов и диаминов в сторону более низких температур., а добавки типа железных мыл в сторону более высоких температур.
- Анионоактивные ПАВ типа железных мыл, наоборот, повышают вязкость битумов всех типов структуры и интенсифицируют процессы старения, оказывая структурирующее воздействие на битум.
- Добавки веществ класса аминов замедляют старение битума коагуляционного типа, т.е. обладающие стабилизирующим влиянием, препятствуют возникновению и развитию пространственной структурной сетки из асфальтенов и тем замедляют старение битумов коагуляционного типа.
- Все рекомендованные поверхностно-активные добавки улучшают смачивание минеральных материалов битумом, вследствие чего облегчаются и ускоряются процессы перемешивания, снижается расход битума.
- Кроме того, мономолекулярный слой ПАВ, адсорбирующийся на минеральной поверхности, в силу своей дифильности обеспечивает прочное прилипание пленки битума к минеральному материалу.

Применяемые в асфальтобетоне ПАВ разделяются на *по химической природе и знаку заряда,* приобретаемому поверхностью при адсорбции, ПАВ классифицируют *на анионные, катионные, неионогенные, амфотерные.*

ИОНОГЕННЫЕ ПАВ подразделяются на два типа: катионоактивные и анионоактивные. Характерными представителями катионоактивных ПАВ являются соли высших первичных, вторичных и третичных алифатических аминов и четырехзамещенные аммониевые основания: БП-3 (высшие алифатические амины, продукт на основе полиэтиленполиамина и синтетических жирных кислот); алифатические амины.

Характерными представителями анионоактивных ПАВ являются высшие карбоновые кислоты, соли (мыла) тяжелых и щелочно-земельных металлов высших карбоновых кислот. Наибольшее применение нашли следующие продукты: кубовые остатки синтетических жирных кислот (побочный продукт, вырабатываемый заводами жирозаменителей); госсиполовая смола (хлопковый гудрон); таловый пек; каменноугольная смола.


Эффективным **Неионогенным ПАВ** является камид — продукт на основе моноэтаноламина и кубовых кислот. Рекомендуемые пределы концентрации ПАВ при введении в битум: для катионо-активных 0,5-1,5% от массы битума; для анионоактивных 3-5%; для неионогенных азотосодержащих 1-2%.

ПАВ оказывает определенное воздействие на процессы формирования структуры асфальтобетона. Изменяя порядок введения в мешалку смесителя компонентов асфальтобетонной смеси и применяя ПАВ, можно регулировать процессы формирования микроструктурных связей. По традиционной технологии приготовления асфальтобетонной смеси ПАВ вводят непосредственно в битум, при этом они оказывают специфическое действие в зависимости от структуры битума и типа ПАВ.

Классификация ПАВ (группа В)

Природа полярной группы	Основное влияние на качество вяжущего	Примеры ПАВ
Катионные (КПАВ)	Адгезия к любому типу щебня	дад-к
		Дорос – АП
		АМДОР 10
		Wetfix BE
		БАП-ДС ЗВ
		Азол 1002
Анионные (АПАВ)	Адгезия	Азол 1001, таловый пек
	Водостойкость	
	Адгезия	Синтетические жирные кислоты
		Железные мыла
	Адгезия	
	Повышение вязкости вяжущего	
Амфотерные (АМПАВ)	Адгезия	ДАД — 1 C
(амфолитного типа)		
	Адгезия, теплый асфальтобетон	Азол 1003
Фосфорсодержащие	Адгезия	МБПГ-7
(ФПАВ)	Структурирующий эффект	Старфос 04
		Стардоп 130 П
Полимерные	Адгезия	Cecabase RT 945
(ППАВ)	Структурирующий эффект	Афтисотдор
	Водостойкость	Техпрогресс-1

Классификация поверхностно-активных веществ. (ПАВ) ПАВ Водорастворимые Маслорастворимые

СПАСИБО ЗА ВНИМАНИЕ!

Л.А. Горелышева, к.т.н., заведующая лабораторией асфальтобетонов, органоминеральных смесей и органических вяжущих ФАУ «РОСДОРНИИ»

Тел. (495)452 36 00

E-mail: labndo@rosdornii.ru